PL EN
REVIEW PAPER
THE AVERAGE COMPLEXITY OF THE PROBABILISTIC ALGORITHM FOR FINDING PRIMITIVE ROOTS MODULO n
 
 
More details
Hide details
1
Politechnika Warszawska
 
 
Publication date: 2014-12-05
 
 
SBN 2014;6(2): 247-258
 
KEYWORDS
ABSTRACT
Primitive roots from a natural number n (i.e. generators of the multiplicative group Zn∗) play an important role in many cryptographic algorithms like public key ciphers, digital signatures and key agreement algorithms. In the paper, proof of correctness of the probabilistic algorithm for finding primitive roots is given along with assessment of its average computational complexity. Results obtained for the multiplicative group Zn∗ can be in natural easy way generalized on the case of arbitrary finite cyclic groups.
 
REFERENCES (10)
1.
V. Shoup, A computational Introduction to Number Theory and Algebra, Cambridge University Press, 2008.
 
2.
N. Koblitzc, A Course in Number Theory and Cryptography, Springer, New York 1994.
 
3.
C. Bagiński, Introduction to Group Theory (in Polish), Script, Warszawa 2002.
 
4.
W. Narkiewicz, Number Theory (in Polish), PWN. Warszawa, 1990.
 
5.
A. Menezes, P. Oorschot, S. Vanstone, Handbook of Applled Cryptography, CRC Press Inc., 1997. (http://cacr.math.uwaterloo.ca/...).
 
6.
D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004.
 
7.
S. Yan; Number Theory for Computing, Springer, Berlin-Heidelberg, 2002.
 
8.
J. Pieprzyk, T. Hardjono, J. Seberry, Fundamentals of Computer Security, Springer, Berlin, Heidelberg, 2003.
 
9.
A. Białynicki, Algebra, Warszawa, PWN, 2010.
 
10.
A. Paszkiewicz, Badania własności liczb pierwszych i wielomianów nieprzywiedlnych pod kątem zastosowania w telekomunikacji, Oficyna Wydawnicza P.W.; Warszawa 2012.
 
ISSN:2082-2677
Journals System - logo
Scroll to top