PL EN
REVIEW PAPER
APPLICATIONS OF L-FUNCTIONS IN CRYPTOLOGY
 
More details
Hide details
1
Uniwersytet Adama Mickiewicza w Poznaniu
 
 
Publication date: 2014-12-05
 
 
SBN 2014;6(2): 259-270
 
KEYWORDS
ABSTRACT
Security of asymmetric cryptological systems is based on the unproved hypothesis that one-way functions do exist. Some difficult computational problems in number theory, such as factorization or a discrete logarithm problem in finite Abelian groups may serve as a basis for constructing presumably one-way functions. The idea of using L-functions (elements of the Selberg class) in this context goes back to M. Anshel and D. Goldfeld (1997). Following them we describe an authentication protocol and an elliptic pseudo-random generator. The former uses Dirichlet L-functions, and the latter Hasse-Weil L-functions of elliptic curves over Q. We conclude by proposing a protocol of coin toss by phone based on the use of non-trivial zeros of L-functions.
 
REFERENCES (26)
1.
M. Anshel, D. Goldfeld, Zeta functions, one-way functions, and pseudorandom number generators, Duke Math. J. 88(1997), 371–390.
 
2.
C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939.
 
3.
D. Bump, Authomorphic forms and representations, Cambridge University Press, Cambridge 1997.
 
4.
H. Davenport, Multiplicative number theory, 2nd ed. Springer, Berlin-Heidelberg 1980.
 
5.
P. Deligne, Formes modulaires et reprsentations l-adiques, S´eminaire Bourbaki vol. 1968/69 Expos´es 347-363, Lecture Notes in Mathematics 179, Berlin, New York: Springer-Verlag, 1971.
 
6.
P. D. T. A. Elliott, The Riemann zeta function and coin tossing, J. Reine Angew. Math. 254 (1972), 100–109.
 
7.
A. Fujii, On the zeros of Dirichlet L-functions, III, IV Trans. Amer. Math. Soc. 219 (1976), 347–349; J. Reine Angew. Math. 286(287) (1976), 139–143.
 
8.
J. von zur Gathen, M. Karpinski, I, Shparlinski, Counting courves and their projections , in Proceedings of the 25th Annual Symposium on Theory of Computing, Association for Computing Machinery, New York, 1993, 805–812.
 
9.
E. Hlawka, Uber die Gleichverteilung gewisser Folgen, welche mit ¨ den Nullstellen der Zetafunktion zusammenh¨angen, Osterreich. Akad. ¨ Wiss. Math.-Naturwiss. Kl. S.-B. II 184 (1975), no. 8-10, 459–471.
 
10.
D. Husemoller, Elliptic Curves, Grad. Texts in Math. 111, Springer-Verlag, New York 1987.
 
11.
A. Ivic´, The Riemann Zeta-function, Wiley, New York, 1985.
 
12.
H. Iwaniec, Topics in Classical Automorphic forms, Graduate Studies in Mathematics, 17, American Mathematical Sociaty, Providence, Rhode Island, 1997.
 
13.
J. Kaczorowski, The k-functions in multiplicative number theory, II, III, Acta Arith. 56(1990), 213–224; ibidem 57(1990), 199–210.
 
14.
J. Kaczorowski, Axiomatic theory of L-functions: the Selberg class, in Analytic Number Theory, C.I.M.E. Summer School,Cetraro (Italy) 2002, ed. by A. Perelli, C. Viola, 133–209, Springer L.N. 1891, 2006.
 
15.
J. C. Lagarias, A. M. Odlyzko, Effective versions of the Chebotarev density theorem. Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pp. 409–464. Academic Press, London, 1977.
 
16.
J. Martinet, Character theory and Artin L-functions, in A. Frohlich (ed.) Algebraic Number Theory, Academic Press London-New York-San Francisco 1977.
 
17.
T. Miyake, Modular forms, Springer-Verlag 1989.
 
18.
W. Narkiewicz, Elementary and analytic theory of algebraic numbers, PWN, Springer-Verlag, 1990.
 
19.
K. Prachar, Primzahlverteilung, Springer-Verlag, 1978.
 
20.
H. Rademacher, Collected papers of Hans Rademacher. Vol. II, Mathematicians of Our Time, 4. MIT Press, Cambridge, Mass.-London, 1974. xxi+638 pp.
 
21.
R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp. 44 (1985), no. 170, 483–494.
 
22.
A. Selberg, Old and new conjecture and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989) (ed. by E. Bombieri et. al.), 367-385, Universit`a di Salerno, Salerno 1992; Collected papers vol II, 47-63, Springer, Berlin 1991.
 
23.
J.-P. Serre, Propri´et´es galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331.
 
24.
E.C. Titchmarsh, The theory of the Riemann zeta function, 2nd ed., Clarendon Press, Oxford, 1988.
 
25.
R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572.
 
26.
A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551.
 
ISSN:2082-2677
Journals System - logo
Scroll to top