PL EN
REVIEW PAPER
RISKS OF ENERGY TRANSFORMATION – A SYSTEMATIC LITERATURE REVIEW
 
 
More details
Hide details
1
Politechnika Warszawska, Polska
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-09-24
 
 
Final revision date: 2024-10-27
 
 
Acceptance date: 2024-10-28
 
 
Publication date: 2024-10-28
 
 
Corresponding author
Grzegorz KUNIKOWSKI   

Politechnika Warszawska, Polska
 
 
SBN 2025;35(1): 63-92
 
KEYWORDS
TOPICS
ABSTRACT
Energy transformation involves converting fossil fuel-based energy generation systems into low- -emission systems that reduce greenhouse gas emissions and lessen the negative impact on the natural environment. The aim of this article is to identify and analyze the risks associated with energy transformation in the English-language scientific literature from 2019 to 2024. The research problem is posed as a question: what risks related to energy transformation are present in the international literature? The research hypothesis is formulated as follows: Energy transformation is associated with high socio-economic risks. The research method employed is a bibliometric analysis based on the PRISMA systematic literature review procedure. As part of the bibliometric analysis, co-citation studies and co-occurrence of keywords provided by the authors were conducted. The research sample was obtained from the SCOPUS database, from which articles containing keywords related to energy transformation and risk were selected. The risks identified in the analyzed publications are associated with both climate change and the economic and technological aspects of the energy transformation process. It is noteworthy that a significant portion of the highly cited publications consists of works in the field of finance, addressing both macroeconomic issues from the perspective of central banks and investment-related risks, including methods for assessing economic feasibility and environmental impacts. The publications reflect the economic dilemmas and risks associated with implementing low-emission technological solutions, particularly regarding the pace and scale of transformation. According to the author, promising research directions include interdisciplinary analyses focused on economic and environmental assessments of low-emission technology implementation, including hydrogen economy technologies, at various scales. In the context of the challenges facing Poland, an appropriate policy for financing the energy transition is crucial to avoid increasing energy costs, which could lead to a rise in energy poverty and a weakening of the country’s economic competitiveness.
REFERENCES (50)
1.
Albert, M.J., 2023. Ecosocialism for Realists: Transitions, Trade-Offs, and Authoritarian Dangers. Capitalism, Nature, Socialism, 34 (1), 11–30.
 
2.
Baldassarri Höger von Högersthal, G., Lui, A., Tomičić, H.,Vidovic, L., 2020. Carbon pricing paths to a greener future, and potential roadblocks to public companies’ creditworthiness. Journal of Energy Markets, 13 (2), 1–24.
 
3.
Borkowski, J., 2023. Typy sieci neuronowych w prognozowaniu cen walut – analiza bibliometryczna [w:] Stępień, Beata, (red.) Systematyczny przegląd literatury w naukach ekonomicznych: metodyka, przykłady. Poznań: Wydawnictwo UEP. Uniwersytet Ekonomiczny w Poznaniu, 123–146.
 
4.
Bulai, V.C., Horobet, A., Popovici, O.C., Belascu, L. and Dumitrescu, S.A., 2021. A varbased methodology for assessing carbon price risk across european union economic sectors. Energies, 14 (24).
 
5.
Cahen-Fourot, L., Campiglio, E., Godin, A., Kemp-Benedict, E.,Trsek, S., 2021. Capital stranding cascades: The impact of decarbonisation on productive asset utilisation. Energy Economics, 103.
 
6.
Campiglio, E. and van der Ploeg, F., 2022. Macrofinancial Risks of the Transition to a Low-Carbon Economy. Review of Environmental Economics and Policy.
 
7.
Chenet, H., Ryan-Collins, J., van Lerven, F., 2021. Finance, climate-change and radical uncertainty: Towards a precautionary approach to financial policy. Ecological Economics, 183.
 
8.
Cormack, C., Donovan, C., Köberle, A., Ostrovnaya, A., 2020. Estimating financial risks from the energy transition: Potential impacts from decarbonization in the european power sector. Journal of Energy Markets, 13 (4), 1–49.
 
9.
Delannoy, L., Longaretti, P.-Y., Murphy, D.J., Prados, E., 2021. Peak oil and the lowcarbon energy transition: A net-energy perspective. Applied Energy, 304.
 
10.
European Commission. Directorate General for Energy., Guidehouse., and Tractebel Impact., 2020. Hydrogen generation in Europe: overview of costs and key benefits. LU: Publications Office.
 
11.
FCHEA, 2021. Road map to a US hydrogen economy: reducing emissions and driving growth across the nation. Fuel Cell and Hydrogen Energy Association.
 
12.
Gambhir, A., George, M., McJeon, H., Arnell, N.W., Bernie, D., Mittal, S., Köberle, A.C., Lowe, J., Rogelj, J., Monteith, S., 2022. Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nature Climate Change, 12 (1), 88–96.
 
13.
gov.pl, 2023. Założenia do aktualizacji Polityki Energetycznej Polski do 2040 roku (PEP2040) – wzmocnienie bezpieczeństwa i niezależności energetycznej [online]. - Kancelaria Prezesa Rady Ministrów - Portal Gov.pl. Available from: https://www.gov.pl/web/ premier/zalozenia-do-aktualizacji-polityki-energetycznej-polski-do-2040-r-pep2040- -wzmocnienie-bezpieczenstwa-i-niezaleznosci-energetycznej [accessed 28 Dec 2023].
 
14.
Grużlewska, M., Andrzejewicz, J., Cieślik, K., Jankowski, P., Jeziorowska, D., Kajfasz, A., Kaliński, P., Koczor, M., Kołdej-Nowicka, U., Leśniak, A., Makowski, K., Naworska, M., Pilarz, P., Radziszewski, M., Rutka, T., Soćko, M., Sojko-Gil, A., Stępień, P., Szymański, A., Wężyk, R., Wojtasiak, T., Zielinko, P., Zawada, A., 2024. Wpływ regulacji UE na transformację sektora ciepłownictwa systemowego w Polsce: ocena skutków i rekomendacje w zakresie regulacji krajowych. Polskie Towarzystwo Elektrociepłowni Zawodowych (PTEC).
 
15.
Habib, R., Afzal, M.T., 2019. Sections-based bibliographic coupling for research paper recommendation. Scientometrics, 119 (2), 643–656.
 
16.
Hayne, M., Ralite, S., Thomä, J., Koopman, D., 2020. Factoring transition risks into regulatory stress-tests: The case for a standardized framework for climate stress testing and measuring impact tolerance to abrupt late and sudden economic decarbonization. ACRN Journal of Finance and Risk Perspectives, 8 (1), 206–222.
 
17.
In, S.Y., Manav, B., Venereau, C.M.A., Cruz R., L.E., Weyant, J.P., 2022. Climate-related financial risk assessment on energy infrastructure investments. Renewable and Sustainable Energy Reviews, 167.
 
18.
Jackson, A. and Jackson, T., 2021. Modelling energy transition risk: The impact of declining energy return on investment (EROI). Ecological Economics, 185.
 
19.
Jacques, P., Delannoy, L., Andrieu, B., Yilmaz, D., Jeanmart, H., Godin, A., 2023. Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model. Ecological Economics, 209.
 
20.
Karanfil, F., Omgba, L.D., 2023. The energy transition and export diversification in oil-dependent countries: The role of structural factors. Ecological Economics, 204.
 
21.
Keček, D., 2023. The Effects of Rising Energy Prices on Inflation in Croatia. Energies, 16 (4).
 
22.
Kowalik, W., Hubert, W., Pepłowska, M., Kryzia, D., Gawlik, L., and Komorowska, A., 2024. Wpływ wyzwań społeczno-kulturowych regionów węglowych na ich zdolności transformacyjne na przykładzie Śląska. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 167–186.
 
23.
Kunikowski, G., 2018. Bezpieczeństwo energetyczne - ocena, trendy i potrzeba uwiadomienia wymiaru społecznego [w:] J. Kunikowski, A. Araucz-Boruc, G. Wierzbicki, (red.). Współczesne potrzeby i wymagania edukacji dla bezpieczeństwa. Siedlce: Uniwersytet Przyrodniczo-Humanistyczny, 427–442.
 
24.
Kunikowski, G., 2019. Przegląd ilościowych metod ocen stanu bezpieczeństwa energetycznego. Roczniki Kolegium Analiz Ekonomicznych, (54), 171–182.
 
25.
Kunikowski, G., 2020. From the taxonomy of threats to the definition of energy security. Scientific Journal of Silesian University of Technology. Series Transport, 106, 73–84.
 
26.
Kurowska-Pysz, J., Kunikowski, G., 2021. The ESCO Formula as Support for Public and Commercial Energy Projects in Poland. Energies, 14 (23), 8098.
 
27.
Larsen, M.L., 2022. Driving Global Convergence in Green Financial Policies: China as Policy Pioneer and the EU as Standard Setter. Global Policy, 13 (3), 358–370.
 
28.
Mercure, J.-F., Sharpe, S., Vinuales, J.E., Ives, M., Grubb, M., Lam, A., Drummond, P., Pollitt, H., Knobloch, F., and Nijsse, F.J.M.M., 2021. Risk-opportunity analysis for transformative policy design and appraisal. Global Environmental Change, 70.
 
29.
MKiŚ, 2021a. Polityka energetyczna Polski do 2040 roku - Załącznik do uchwały nr 22/2021 Rady Ministrów z dnia 2 lutego 2021 roku Ministerstwo Klimatu i Środowiska.
 
30.
MKiŚ, 2021b. Polska Strategia Wodorowa do roku 2030 z perspektywą do roku 2040 roku Warszawa, Załącznik do uchwały nr 149 Rady Ministrów z dnia 2 listopada 2021 roku (poz. 1138).
 
31.
MKiŚ, 2024. Krajowy Plan w dziedzinie Energii i Klimatu do 2030 roku (aktualizacja KPEiK z 2019 roku). Ministerstwo Klimatu i Środowiska.
 
32.
Moessner, R., 2022. Evidence on climate policy, carbon dioxide emissions and inflation. International Journal of Global Warming, 28 (2), 136–151.
 
33.
Nehrebecka, N., 2021. Climate risk with particular emphasis on the relationship with credit‐risk assessment: What we learn from poland. Energies, 14 (23).
 
34.
Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Moher, D., 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71.
 
35.
Page, M.J., Moher, D., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., McKenzie, J.E., 2021. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160.
 
36.
Palmer, G., Roberts, A., Hoadley, A., Dargaville, R., Honnery, D., 2021. Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV. Energy and Environmental Science, 14 (10), 5113–5131.
 
37.
Pepłowska, M., Kowalik, W., Gawlik, L., Hubert, W., Kryzia, D., 2024. Transformacja energetyczna regionu węglowego Śląska – wyzwania i strategie radzenia sobie z nimi. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 169–183.
 
38.
Quorning, S., 2024. The ‘climate shift’ in central banks: how field arbitrageurs paved the way for climate stress testing. Review of International Political Economy, 31 (1), 74–96.
 
39.
Ren, X., Qin, J., Dong, K., 2022. How Does Climate Policy Uncertainty Affect Excessive Corporate Debt? The Case of China. Journal of Environmental Assessment Policy and Management, 24 (2).
 
40.
Riedl, D., 2021. The magnitude of energy transition risk embedded in fossil fuel company valuations. Heliyon, 7 (11).
 
41.
Ruggeri, B., Gómez-Camacho, C.E., 2023. N.Georgescu-Roegen’s production model for EROI evaluation. Case study: Electrolytic H2 production using solar energy. Energy Conversion and Management, 283.
 
42.
Sareen, S., 2021. Digitalisation and social inclusion in multi-scalar smart energy transitions. Energy Research and Social Science, 81.
 
43.
Skinner, C.P., 2021. Central Banks and Climate Change. Vanderbilt Law Review, 74 (5), 1301–1364.
 
44.
Solano-Rodríguez, B., Pye, S., Li, P.-H., Ekins, P., Manzano, O., Vogt-Schilb, A., 2021. Implications of climate targets on oil production and fiscal revenues in Latin America and the Caribbean. Energy and Climate Change, 2.
 
45.
Stępień, B., ed., 2023. Systematyczny przegląd literatury w naukach ekonomicznych: metodyka, przykłady. Poznań: Wydawnictwo UEP. Uniwersytet Ekonomiczny w Poznaniu.
 
46.
Svartzman, R., Bolton, P., Despres, M., Pereira Da Silva, L.A., Samama, F., 2021. Central banks, financial stability and policy coordination in the age of climate uncertainty: a three-layered analytical and operational framework. Climate Policy, 21 (4), 563–580.
 
47.
Tiwari, S., Singh, J.G., 2023. Tri-level stochastic transactive energy management and improved profit distribution scheme for multi-vectored networked microgrids: A multiobjective framework. Sustainable Cities and Society, 95, 104569.
 
48.
Trifu, A., Smîdu, E., Badea, D.O., Bulboacă, E., Haralambie, V., 2022. Applying the PRISMA method for obtaining systematic reviews of occupational safety issues in literature search. MATEC Web of Conferences, 354, 00052.
 
49.
UN Global Compact Network Poland, 2024. Transformacja energetyczna w Polsce. UN Global Compact Network Poland.
 
50.
Vermeulen, R., Schets, E., Lohuis, M., Kölbl, B., Jansen, D.-J.,Heeringa, W., 2021. The heat is on: A framework for measuring financial stress under disruptive energy transition scenarios. Ecological Economics, 190.
 
ISSN:2082-2677
Journals System - logo
Scroll to top