PL EN
REVIEW PAPER
APPLICATIONS OF ELLIPTIC CURVES FOR CONSTRUCTION OF SECURE CRYPTOGRAPHIC ALGORITHMS AND PROTOCOLS
 
More details
Hide details
1
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego w Warszawie
 
 
Publication date: 2014-12-05
 
 
SBN 2014;6(2): 61-79
 
KEYWORDS
ABSTRACT
The main purpose of this paper is to present some methods of choosing secure ECs for construction of cryptographical protocols and hardware implementation of coprocesor that performs aritmetical operations over this set of algebraic curves.
REFERENCES (17)
1.
Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters, 2010.
 
2.
G. Frey, How to disguise an elliptic curve (Weil descent), Talk at ECC’98, Waterloo, 1998.
 
3.
G. Frey and H.-G. Ruck, A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves, Math. Comp., 62(206):865–874, 1994.
 
4.
J. Gawinecki, J. Szmidt, Zastosowanie ciał skończonych i funkcji boolowskich w kryptografii, BelStudio, 2001.
 
5.
D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004.
 
6.
R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, revised edition, 1994.
 
7.
A. Karatsuba and Y. Ofman, Multiplication of Multidigit Numbers on Automata, Soviet Phys. Doklady 7(7):595596, 1963.
 
8.
A.J. Menezes, T. Okamoto, and S.A. Vanstone, Reducing elliptic curve logarithms to logarithms is a finie field, IEEE Trans. Information Theory, 39(5):1639–1646, 1993.
 
9.
S.C. Pohlig and M.E. Hellman, An improved algorithm for computing logarithms over gf (p) and its cryptographic significances, IEEE Trans. Information Theory, IT-24(1):106–110, 1978.
 
10.
P.L. Montgomery, Modular multiplication without trial division, Mathematics of Computation, 78:315–333, 1985.
 
11.
PKN, PN-ISO/IEC 15946-1. Technika informatyczna – Techniki zabezpieczeń – Techniki kryptografii oparte na krzywych eliptycznych – Część 1: Postanowienia ogólne, 2005.
 
12.
J.M. Pollard, Monte carlo methods for index computation (mod p), Math. Comp., 32(143):918–924, 1978.
 
13.
H.-G. Ruck, On the discrete logarithm in the divisor class group of curves, Math. Comp., 68(226):805–806, 1999.
 
14.
I. A. Semaev, Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p, Math. Comp., 67(221):353–356, 1998.
 
15.
R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp., 44(170):483–494, 1985.
 
16.
R. Schoof, Counting points on elliptic curves over finite fields, J. Th´eor, Nombres Bordeaux, 7(1):219–254, 1995. Les Dix-huiti´emes Journ´ees Arithm´etiques (Bordeaux, 1993).
 
17.
L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Discrete Mathematics and Its Applications. Chapman & Hall/CRC, 2003.
 
ISSN:2082-2677
Journals System - logo
Scroll to top